Build-up of symmetry breaking using a titanium suboxide in bulk-heterojunction solar cells.
نویسندگان
چکیده
The importance of symmetry breaking was investigated in bulk heterojunction solar cells with a conventional device structure. Artificial symmetry breaking was built up by introducing a titanium suboxide. With sufficient symmetry breaking, the influence of the cathode work-function can be diminished, thereby extracting the same level of open circuit voltage regardless of metal work-function.
منابع مشابه
Improvement of light harvesting by inserting an optical spacer (ZnO) in polymer bulk heterojunction solar cells: A theoretical and experimental study
By introducing a thin ZnO layer as an optical spacer, we have demonstrated that inserting this layer between an active layer and a reflective electrode results in a re-distribution of the optical electric field inside bulk heterojunction solar cells. A theoretical analysis by optical modeling showed that the thin ZnO layer could shift the position of the maximum of the electric field into the a...
متن کاملHigh Efficiencies in Nanoscale Poly(3-Hexylthiophene)/Fullerene Solar Cells
A modified morphology was introduced for poly(3-hexylthiophene):phenyl-C71-butyric acid methyl ester (P3HT:PC71BM) bulk heterojunction (BHJ) solar cells by thermal and solvent annealing treatments in the presence of hydrophilic-hydrophobic block copolymers. Power conversion efficiency (PCE) plummet was prohibited during both thermal and solvent treatments for all BHJ devices modified wit...
متن کاملMoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells
Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the per...
متن کاملSimple Photovoltaic Device Based on Multiwall Carbon Nanotube/Silicon Heterojunction
Multiwall carbon nanotubes (MWCNTs) are grown via chemical vapour deposition method directly on a stainless steel substrate. Raman spectroscopy and transmission electron microscopy are the techniques chosen to characterize the structure of the synthesized carbon nanotubes: few structural defects are detected. After their removal from the stainless steel substrate, the as-grown MWCNTs are then a...
متن کاملValence band alignment and hole transport in amorphous/crystalline silicon heterojunction solar cells
To investigate the hole transport across amorphous/crystalline silicon heterojunctions, solar cells with varying band offsets were fabricated using amorphous silicon suboxide films. The suboxides enable good passivation if covered by a doped amorphous silicon layer. Increasing valence band offsets yield rising hole transport barriers and reduced device effciencies. Carrier transport by thermal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 12 شماره
صفحات -
تاریخ انتشار 2012